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ABSTRACT 

A mathematical analysis is developed for the 

hydrodynamic problem of a two-dimensional planing surface 

which is heaving sinusoidally.  From the assumptions of 

small angle of attack and small amplitudes of motion, it 

is possible to formulate a linear problem.  Gravity is ne- 

glected. A condition is developed for predicting instabil- 

ity of the steady forward motion. 



INTRODUCTION 

Several years ago, Mottard (1965) reported some 

observations of planing instability involving just one 

mechanical degree of freedom. He towed a large-aspect- 

ratio planing surface in such a way that it could not 

pitch, although it was free to heave.  In a series of 

careful experiments, he found that there was a rather 

clearly defined range of conditions under which the 

planing surface oscillated spontaneously. The instabil- 

ity appeared to be quite similar to the flutter of an 

airfoil. 

The occurrence of flutter normally requires that two 

vibrational degrt.es of freedom be involved, for otherwise 

the hydrodynamic force provides positive damping, and a 

spontaneous oscillation cannot develop.  Mottard checked 

carefully in his experiments to determine that no pitching 

motion occurred or, at least, that pitching motion had no 

effect on the phenomenon he was observing.  His planing sur- 

face underwent a spontaneous oscillation in heave alone. 

Mottard suggested that there was effectively a second 

degree of freedom because of the presence of the free sur- 

face.  Ahead of the planing surface, the free surface oscil- 

lates at the same frequency as the planing surface itself 

but generally with a phase shift.  Thus the location of the 

leading edge of the planing surface varies for two reasons: 

(1) the planing-surface immersion varie in time, and (2) the 

free-surface elevation just ahead of the planing surface 

varies.  Mottard showed that his hypothesis was consistent 

with his measured values of lift coefficient, lift-curve 

slope, etc. 

- 1 - 
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In the present paper, a first attempt is made to 

analyze the hydrodynamics of this problem.  It is as- 

sumed that a two-dimensional flat planing surface is 

moving at constant forward speed and oscillating sinu- 

soidally in heave.  Gravity is neglected with respect to 

both the steady and unsteady components of motion; this 

leads to some difficulty, as might be expected. The lo- 

cation of the leading edge is an unknown quantity in the 

problem. 

It is assumed that the lifting-surface problem can 

be linearized in the manner of Wagner (1932). Then the 

free-surface problem reduces to an airfoil problem which 

is solved in terms of the unknown variable location of the 

leading edge. The free-surface disturbance ahead of the 

planing surface is determined, also in terms of the un- 

known location of the leading edge.  Finally, this unknown 

quantity is determined by a simple geometrical matching of 

the water elevation to the instantaneous position of the 

planing surface.  At this point, the linear hydrodynamic 

problem is completely solved, and one can compute the lift, 

which is then resolved into components in phase with dis- 

placement and with velocity.  If the latter is positive, a 

free oscillation will tend to grow until nonlinear phenomena 

change the problem in some way. 

In terms of an  equivalent airfoil problem, we may say 

that the two degrees of freedom are the heave motion and the 

variation in chord length which follows from the movement of 

the leading edge.  In planing problems, of course, the leading 

edge is likely to be rather poorly defined, since there is an 

extended region filled with spray.  In an idealized treatment 

of the planing problem, there is a jet of water thrown forward, 

rather than spray, but even this idealization does not help 

■ 
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in defining the location of the leading edge.  However, 

in the linear theory the location of the leading edge is 

uniquely defined, for the jet thickness is a small quantity 

of second order in terms of, say, angle of attack.  Similar- 

ly, the entire region in which a portion of the incident 

flow is reversed to form the jet is a very small region, 

its characteristic dimensions being second-order quantities. 

As Wagner showed, the flow in this region appears from a 

distance to have a square-root singularity entirely compa- 

rable to the square-root singularity at the leading edge 

of an idealized airfoil. These results can also be derived 

in a more rigorous manner from the nonlinear analysis of 

Green (1935). 

It has long been recognized that the analytical treat- 

ment of planing surfaces on water of infinite depth leads to 

an anomalous result if gravitation effects are neglected: 

The height of the free surface drops off logarithmically at 

infinity both upstrecjn and downstream. This anomaly has been 

studied thoroughly by Rispin (1966) and Wu (1967).  They 

showed that the usual analysis is really valid only in a 

near-field sense; it must be matched to a far-field descrip- 

tion which includes the presence of gravity waves. Thus the 

classical gravity-free description of planing is not incor- 

rect, but it must be interpreted carefully. 

Gravity is neglected in the present paper also.  Since our 

solution includes the steady-motion problem as a special case, 

we must anticipate a similar difficulty.  In fact, the ano- 

malous behavior at infinity becomes critical when we seek to 

find the free-surface disturbance ahead of the planing surface, 

This will be discussed further in its proper place. 

^WKSfc*^ 
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We do not attempt to develop inner and outer solutions 

of the time-dependent problem, and so it is not surprising 

that the solution is poorly behaved near zero frequency. 

In fact, our solution can really be interpreted only in 

terms of generalized functions, because of the difficulties 

discussed, and this is a rather unsatisfactory state of 

affairs for a solution which is supposed to have physical 

meaning. Nevertheless, there is reason to believe that the 

solution does have meaning for frequencies not too near zero. 
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THE BOUNDARY-VALUE PROBLEM 

We assume that there is a steady flow incident from 

the let4:, with speed U . The planing surface is flat, 

with an angle of attack a  in steady motion.  The trailing 

edge is located at the point  (x,y) = (l,d)  in steady 

motion, the leading edge -t  (0, a + d)  .  In the general 

problem, we assume that the planing surface is displaced ver- 

tically a distance h = h(t)  , and so the equation of the 

planing surface is: 

y = (1 - x)a + d + h(t)  . (1) 

The planing surface has a sha^-p after termination at 

x = 1 , but we do not specify a forward termination; 

the flat surface extends indefinitely far forward. 

The form of the free surface is described for the 

moment only by an unknown function: 

y = Y(x,t)    x < a(t)  and x > 1  .       (2) 

At the leading edge, the values of y given by Equations 

(1) and (2) will be equal.  This occurs at the point which 

we identify as x = a(t)  , and from this fact we obtain an 

important boundary condition: 

y(a(t),t)  = [l - a(t)]a + d 4 h(t)  .       (3) 

For steady motion of the planing surface, let us denote 

the free-surface elevation by Y0(x)  .  Then Equations 

(1) , (2), and (3) take the special form: 

■■»".■■ -" -fivamft*»-*fie  laattriuaaiamx-   -■ 
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y = (1 - x)a + d  ; (!•) 

y = Y0(x)  ,  x < 0 and x > 1  ;          (2') 

yc(0) = a + d  . (3«) 

Let there be a velocity potential: 

Ux + 4){x,y,t) = Re Uz + f (z,t) ,          (4) 

where z = x + iy  .  The linearized boundary conditions 

on the potential function are as follows: 

<t>y  = -aU + h(t) 

= v(t)  , on y = 0  ,  a(t) < x < 1  ;     (5) 

Ucj) + (j). = 0 on y = 0 , x < a(t)  and x > 1 ; (6) 

ÜY + Y = (f)  on y = 0 , x < a(t)  and x > 1 . (7) 
A    t«    y 

Equation (5) is the usual kinenatic boundary condition 

on the planing surface.  Equations (6) and (7) are, 

respectively, the dynamic and kinematic conditions on 

the free surface.  Equation (6) can be re-expressed: 

^(x^t) = (j,(x0,0,t-(x-x0)/u)  , 

I 
where xr    is any x < a(t)  or x > 1  .  (Different 

functions must be used in the upstream and downstream 

regions, of course.)  We may suppose that, if we go far 

enough upstream, there is no disturbance, and so $ = 0 

. 

■ ■ . . 



- 8 - 

for large enough values of -x  .  If we select x»  in 

such a region, we have: 

<j>(x,0,t) =0 on y = 0  , x< a{t) (8) 

As a corollary, we note that this implies: 

0(x,-y,t) = -(j)(x,yft)  . (8') 

It is this result primarily that allows us to reduce our 

problem to an equivalent-airfoil problem.  One must use 

some care in passing from (6) to (8), because the steady 

free-surface disturbance is in fact, arbitrarily large 

far away. However, the potential function for steady 

motion can be chosen so that it is identically zero on 

y = 0 upstream.  (This procedure is really justified 

only in the sense proven by Rispin (1966) and Wu (1967).) 

Although Equation (6) applies both upstream and 

downstream. Equation (8) is valid only for x < a(t)  , 

and there does not appear to be any useful way of simplify- 

ing (6) for downstream application.  However, using (8'), 

we can extend the definition of the potential function 

into the whole space, and then Equation (6) becomes just 

the usual downstream condition for continuity of pressure 

across a vortex wake.  Furthermore, the extended potential 

must satisfy (5) on y = +0 as well as on y = -0  , 

and so the body boundary condition is equivalent to that 

on a flat-plate airfoil of zero thickness.  Thus the boun- 

ary-value problem for the planing surface is the same 

as for an oscillating airfoil. 
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We can integrate (7) in a manner similar to that 

used on (6): 

x ^ 
y(x,t) = Y(x0,t-(x-x )/U) + (1/U) f      4 (x'^^-Cx-x^/U) dx» 

The boundary-value problem to be solved then is the 

following: Given a sinusoidally varying h(t)  , find the 

velocity potential for arbitrary amplitude and phase of 

a(t)  , the potential satisfying (5), (6), and (8);  then 

use (9) to compute Y(x,t) and finally find a(t) such 

that (3) is satisfied. 

As in the aerodynamic problem, there is a mathematical 

indeterminacy unless we provide one more condition, namely, 

the Kutta condition: At the trailing edge, the fluid 

velocity should be bounded or as weakly singular as possible. 

In converting the planing problem into an airfoil 

problem, one can easily lose sight of the essential physical 

differences between the two.  We shall be solving the 

problem as if there were a vortex wake, but there is none, 

of course. There is a free surface instead. We are simply 

fortunate in that the problem is equivalent mathematically 

to a well-studied problem. Concepts such as circulation 

have no place in the planing problem.  The fluid region 

is simply connected and the potential function is single- 

valued.  There is no circulation.  (Nevertheless, we shall 

use some of the terms and symbols of aerodynamics in solving 

the problem. 
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SOLUTION OF THE BOUNDARY-VALUE PROBLEM 

From the equivalent aerodynamic problem, we can 

expect to find a solution which corresponds to a vorticity 

distribution over the planing surface and its wake. There- 

fore we write the complex potential in the form: 

/CO 

yU,t)  log[u-z)A]dC     , (10) 

where 

-v £ arg   (C-z)   <_      + -n     ; 

-v <_ arg C £      + ^ 

This form of the solution automatically satisfies (8), 

the upstream dynamic condition. 

The downstream dynamic condition, (6), is satisfied 

if we require that 

Y(x,t) = Y(l+/t-(x-l)/ü)  for x > 1  . (11) 

In the aerodynamic problem, Equation (11) is interpreted 

to mean that vorticity is convected with the fluid. 

In the planing problem, it means only that a potential 

function given as in (10) will represent a fluid motion 

exhibiting constant pressure on the free surface (in a 

linearized sense). However, in our extended problem, 

we have all of the mathematical features of the airfoil 

problem, including conservation of rotation.  Therefore 

we can proceed strictly mathematically in computing the 

circulation about the equivalent airfoil;  this circulation 
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ls time-dependent/ and so free vorticity must be generated 

at the trailing edge. Just as In the airfoil problem, 

we then have: 

UY(l+,t) = " af f YUrt) d£ =   -  ffi-^ (11') 
at-'a(t) az 

Together with (11), this shows that the function Y(x,t) 

for x > 1 Is completely determined by the "circulation", 

r(t)  , of the segment from x = a{t) to x = 1 

In the interval a(t) < x < 1  , we find the function 

Y(x,t)  In the manner of Karman and Sears (1938). First, 

let: 

Y(x,t) = Y0(x,t) + Y1(x,t)  , a(t) < x < 1  ,   (12) 

where 

Yo(x,t) = 2(-aü+ÄyCE^ = 2v(t)|/OH^r .      (13) 

Corresponding to Y0(x,t) we define a potential function: 

f0(2,t) =^T J Y0(C,t) log [U-Z)/K]  d5  .     (13a) 
a(t) 

The real part of this function, say <l>0(x,y,t)  , has the 

property that: 
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*o i*'0'* = - ? (-aü+A) j  Vü" i^i='aü+Ä  * 
a(t) 

Thus (j>0(xfO,t)  by itself satisfies condition (5), and 

the remainder of the potential must contribute no vertical 

velocity component on y = 0  , a(t) < x < 1 

The remainder of the complex potential is (cf. (10), 

(12), (13a).): 

1 1 * T 

^ r Y1(^t) log[(£-z)/5]de + Jk-fY^t) log[(C-z)/CjdC 

a(t) 1 

If we choose Y1(xft)  as follows: 

Y (X t) = 1\l1-*     fT/FiTty Yüjt) dg Y^t)    7rYx_a(t) j^^y |ri c_x       ' ^4' 

the required condition is indeed satisfied.  This is the 

classical result of unsteady airfoil theory;  see, for 

example, Karman and Sears (1938).  For any wake vorticity 

distribution, if we choose Yi(x,t)  as above in 

a(t) < x < 1  , the combination of the wake vorticity 
and this part of the bound vorticity produces no vertical 

component of velocity on the airfoil.  Mathematically, the 

same results can be carried over to our planing problem, al- 

though the interpretations involving vorticity do not apply, 

With Y(x,t) given by (11), (ll1), (12), (13), and 

(14), the potential function (10) satisfies three of our 

boundary conditions, namely, (5), (6), and (8), regardless 

*/ 
denotes a Cauchy principal value. 
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of the nature of the function a(t)  .  In principle, 

all that remains is to compute the free-surface elevation 

upstream and match it to the position of the planing sur- 

face to determine a(t) 

For future use, let us calculate the two parts of 

the "bound vorticity," that is, 

lyt) = J      Yj(x,t) dx . 
a(t) 

(15) 

We find: 

r0(t) 

r^t) 

= 7r{l-a) (-aU+h) 

./"acvu,t,[7Eigr-iJ 

(15a) 

(15b) 

The "vorticity" just behind the trailing edge is, from 

(11'), 

Y(l+,t) = -Tr[l-a(t)j h(t)/ü + 7ra(t) [-aü+h(t)]/ü 

^y(K,t)jU-l)U-e(t))j    ' (16) 

■ 
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Equation (11) can then be used to specify the junction 

Y(x,t)  everywhere downstream of the planing surface. 

THE SECOND LINEARIZATION 

The linearization of the problem required that the 

steady angle of attack,  a  , and the motion variables, 

h(t)  and a(t)  , be small quantities.  From Equation 

(16), it is apparent that we have ended up with formulas 

which include quadratic functions — and worse — of 

the small quantities. Since we are analyzing the stability 

of the steady motion of the planing surface, it is con- 

sistent with the usual approach to perturbation problems 

to assume all disturbances to be small enough that only 

linear combinations of small quantities occur. Let us 

be specific, however, about the assumptions which are 

required. 

The basic small parameter is a     , the angle of 

attack. As the planing surface hoaves an amount h , 

the location of the forward edge moves a distance which 

is of the order of magnitude of h/ot  , that is, 

h = 0 (aa)  .  Therefore we require that h = o(oi)  , 

which implies that a = o(l)  .  The function y{y.,t) 

is also small.  Neglecting all terms except those of 

order 0(h)  , we have the following approximation of 

Equation (16) : 
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Y(l+,t) = -Trh{t)/U-Traa(t) 

i r 
ü d? ytU.t) [^ -1 i 

J 
(16') 

Now the*- everything is linear in the time-dependent 

quantities, we assume that time variation is sinusoidal 

at frequency u , and we use the exponential form of 

the sine function. Let: 

h(t) = h0e 
iut 

a(t) = a0e 
i(ü)t-e) 

(17a) 

{17b) 

Y(x,t) = geiu,(t-x/ü)  ,  1 < x < - .       (17c) 

Note that h0 and a0 are real constants, whereas g 

is generally complex. The new approximation for 

Y(l+,t)  , in place of (16'), is: 

Y(l+,t) = 2 -ie 
ITü) h./U - Triti)aa0e 

\ 

-äiü/Jaje-^^^-ljje^ (18) 

This equation, with (17e), can be solved for g in terms 
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of h- and a^e    .  Following the usual conventions 

of unsteady airfoil theory, we write the result: 

1   -ie" 
ixj livhn + 9aane 

g = -4,Ue"|Ko);v) j^tiv)!  , (19) 

where v = ui/2U    and K.(z)  is a modified Bessel function 

of the second kind. Since the arguments of the Bessel 

functions are purely imaginary, the functions could be 

rewritten in terms of Hankel func tions (Bessel functions 

of the third kind) of real argument. Witn g given 

as above, the "vorticity" is given everywhere downstream: 

Y(x,t) = Re (geia,(t-X/ü)j   ,  1 < x < »  .  (20) 

(We imply the real part of all complex expressions, of 

course. We shall not generally bother to indicate this 

explicitly.) 

THE CONDITION FOR a(t) 

We now return to the upstream kinematic boundary 

condition, (7) .  The right-hand side can be written: 

.       . 
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(j>y(x,0,t) = -ji f yU/t) ^| 
J a(t) 

= -aü + «H^-vQ^i 
-iw^/U 

" 2Tr ge   Va(t)-x J VC-l   ?-x 
dC 

(21) 

The integral of the boundary condition, given in (9), 
can now be computed: 

x-x. 
Y(x,t) = Y(x0#t - -ü- 

x 
I j  dx'f .aü + h(T)j[l-\/iTi^lr 

.£ -icuT.y l-x» f" dge-itog/u ^/T" 1 
" 2* e  Va(T)-x' J  ^Fx1  V^T | ' (22) 

- 

I 

where T = t - (x-x')/U 

We would like to let xQ +  -<*>    in (22) , since we may 

expect that there will be no disturbance there. However, 
we recall that this solution includes the steady-motion 
solution, which, far from vanishing, yields an infinite 
displacement of the free surface far upstream. Never- 
theless, we are really interested only in the unsteady 

I 
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part, and one may hope that the latter is not so badly 

behaved.  Let us assume that this is the case.  For 

steady motion, we have the following relationships: 

^(x^t) = -oU fl -\f±~    j , -oo < x < 0  ; 

y(x,t) = y0(x) = Y0(x0) + i f" (|)y(x',0)dx' 

= Y0 (x0) -a ^[lY^-Jdx'    . 
X0 

We substitute this expression for Y0(x)  into Equation 

(3')/ obtaining: 

W = d + 

'   xrt 

In the unsteady-motion problem, we now assume that the 

displacement of the free surface far upstream is equal 

to the displacement in the steady-motion problem, 

i.e.,  Y(x0,t) - Y-Cx-) -»■ 0 as x -»■ -" .  This is 

where we explicitly require that the unsteady component 

of surface displacement vanish upstream.  Thus, we substi- 

tute this expression for Y-Cx.)  into (22) in place of 
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" 

I 

= 

Y(x0,t)  : 

Y(x,t) = d + 

»   x„ 

+ ij%x.j[-aü+h(T)j
,[l-^T±^Tji 

x0 

- ^ t ^ / i:x'   r00 dte-^/v .rr 
(23) 

- 
Finally, we let x0 go to -« , set x = a(t)  , and 

then use (3). We obtain the following equation to be 

solved for a(t)  : 

a[l-a(t)]    +d + h(t)   =a + d 

dx 

iJ0dxMt+g)  [l-^H" 
(24) 

- 2£ 
iwt     /• 0 

2TrU 
/^eWo^J-a,^^ 

FT   . 

. ■ ■ ■ 

. ■ 
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The limit which appears here does exist if w ^ 0 

Clearly there is a bit of computing to be done to determine 

a(t)  , or, what is equivalent, aQe~X       •    When the previous 

expression for g  , Equation (19), is substituted into 

(24), we see that we have simply a linear (complex) equation 

0* for ane    , and so the solution, in principle, is tri- 

vial. 

In the Appendix, it is shown that Equation (24) can 

be rewritten in terms of standard functions: 

0 = aa(t) [i- ie1VK0(iv) + i   f   dCelC K0(U) 

- ive^ h(t) [^(iv) + K0{iv) 

-iiü9e     ^  dxe 1-irJ  E(iriT)   •        (24 > 

where E(x)  is the complete elliptic integral of the 

second kind. 

The integral containing the elliptic integral does 

not exist in a classical sense.  However, we can rewrite 

that term as follows: 

J'äxe-2i.X     (X^   E(eil) 
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In this form, it is obvious that the results are invalid 

for zero frequency.  Here,  6(x)  is the Dirac delta func- 

tion.  Of course, the necessity for an interpretation 

in terms of generalized functions raises some question 

about the validity of the results for all frequencies. 

However, one is certainly not surprised about the dif- 

ficulty at zero frequency, and the problem formulation 

seems rather reasonable for finite frequency. 

This difficulty can probably be removed in either 

of two ways:  (1) An initial-value problem might be for- 

mulated, or (2) the above solution might be interpreted 

as a near-field solution which ought to be matched to 

a non-pathological far-field solution. 

THE PREDICTION OF INSTABILITY 

The lift can be computed by using the momentum approach 

which is common in aerodynamics, or one may compute the pres- 

sure on the planing surface and integrate to find the lift. 

(In the former case, a factor of one-half must be intro- 

duced to eliminate the lift on the upper face of the equiv- 

alent airfoil.)  The result is the following: 

L(t) = TrpU2a + [A^V) + iA2(v)] ea iut (25) 

wher« 

A1(v) + iA2(v) = -TrpU" 

+ aane 
-le 

ivh. iv + 
2K1(iv) 

K0(iv)+K1(iv) 

iv + 
K^iv) 

KQUVJ+K^IV) 
(25«) 
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The lift is, of course, just the real part of this ex- 

pression, and the heave motion is given by: 

h(t) = h- cos wt  ;  h(t) = -uh. sin »ot  .   (26) 

Thus we can rewrite the lift expression: 

A,(v)       A-(v) 
L = npü2a + -ir:— h(t) + -^— h(t)  .      (27) 

If A2(v) < 0 ,  the oscillation is stable, but, for 

A7(v) > 0  , the hydronamic lift will provide negative 

damping and instability will occur. It is a numerical 

problem to determine under what conditions A-(v) be- 

comes positive. 
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APPENDIX 

The mathematical details are presented here for the 

step from Equation (24) to Equation (24').  There are 

three integral terms in (24), which we discuss in order, 

The first term is: 

I 
X0 ■■.» Kt'-^l-O-ssH ■ 

where 

= t - [a(t)-x]/ü  , 

i(ü)t-e) a(t) = a0 e 

In the following paragraphs, it is understood that the 

symbol a always means a(t)  unless we specifically 

write a(T) 

First we approximate the square-root involving ad) 

the following sequence of steps is rather obvious: 
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-1  " ^-1 

[a(T) - x] 7 - |a(t) exp [-iu)(a-x)/ü:- x J 

= ({a-x) - a + a exp [-iu)(a-x)/ü] I 

- [a(t)-x]^ [i - a(t) p-exp_C-iMU-x)/ciljj 

1 
"I  ^ 

The second term in the second factor on the right-hand 

side can always be made less than 1 in magnitude if 

we make a small enough. To show this, choose so^e 

number m such that  |2a(t>/m| < 1  .  The quantity 

under consideration is an entire function of the complex 

variable z  , if we simply replace x by z  : 

1 - expC-iü)(a-z)/u] 
a-z 

Therefore it has a power series which converges in the 

whole z -plane.  For  |z-a| < m  , there exists a 

number M such that 

1 - expC-icD(a-z)/uI  < M 
a-z 

We can ensure that  |Ma(t) j < 1  just by making a(t) 

small enough.  For  |a-xj > m  , the following estimate 

is valid: 
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11 - expC-i(j(a-x)/u3 
a-x 

< i 
m 

Thus for either  ix-a| < m or  |x-a| > in , we have 
that: 

|a(t)| |— e*Pr-i"(a-x)/u3j < 1 
a-x 

We can now expand the second factor in the following 
series: 

l-a(t) 1 - expr-iü)(a-x)/o3 lr1/2 
a-x f 

= 1 + i^lL fl - expHL.,(a-x)/ü3l + ^     # 

The integral which includes this factor can be written: 

r^^-rAgäh i + a(t) l-exp[-iü)(a-x)/u]1 
a-x        I 

+ 0(a£) 

We change the variable of integration: 

x' = (x-a)/(l-a/x0)  , 
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and reorder terms in the expression for I   , obtaining: 
x0 

I  = aa(t) 
x0 '    2 

(r 0 n— r. +iäi)x/ü":) 

The integral can be transformed into standard form by 

another change of variable:  £ = 2x+l  .  Let v = üJ/2ü 

Then: 
2|xft|+l 2|xJ+l 

X  a.-(t)   limeivf  dCe^f.^f  ^i, l-e^;^'^ \ 

We can now let x0 -► -« .  Tne first term is just 

elvK0(iv)  . We note that the derivative of the second 

term with respect to v is: 

dvj 

= 2ielvK0(iv)  . 

Thus, 

r00  df  l-e-^^-D     ^   iC 
2/  ==ä= i-Vr  »2i/  dCei5KQ(i?)  , 
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since the left-hand side is zero for v = 0 

these results, we have: 

Combining 

\ = -^[*ivi''-"/>*i%H • 

The seconc integral term in Equation (24) can be 

reduced rather simply by the following steps: 

i/_°dxh(t+g) [x-^Ü] 

= * h(t) / ' dx e1-/" [l-/Ii|] 

= üÄ(t)(2nr-ieiv[Ko(iv)+Ki(iv)] 

We may note that 

^Mt) »jihU) =h(t) 

and so the first term above cancels another one of the 

terms in (24). 

The third integral in (24) can be put into a sym- 

metrical form by a simple change of variable: 

f0 .    iwx/u /i-x r00 

-Ldxe    /—Jx 
00 dge-ia)S/0   . c 

C-x        1/^1 

- 2j 1 
dx e V^TJ 1l^e VFT    * 
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We now substitute: 

y = (xH)/2  , n = (x-C)/2 

The differential changes: dx d? = 2 dy dn  .  The 

y -integration extends from 1 to "» f and the n 

-integration from -(y-1)  to  (y-1)  ; however, the 

integrand is even with respect to n >  and so we can cut 

the range of n in half and multiply the integral by 

2 . For the above integral, we now have: 

r 
J i y 

e-2ivy 

i    dy 
j 1 

1           2     2 y-1       /(y+1)   -iT 

0   ^iy-iS-J 

e.2ivy  ^J^ /l-k2t2 

/l-t2 

where k = {y-l)/(y+l)  . The inner integral is now 

just the elliptic integral (complete) of the second kind. 

This completes the derivation of (24'). 

It was noted following Equation (24') that the inte- 

gral containing the elliptic integral in its integrand 

does not really exist in terms of conventional functions. 

The generalized-function interpretation is based on the 

concepts developed in, for example, Lighthill (1958). 

; 
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